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All our analyses were carried out using the R programming language. 

 
1. PROBING SPATIAL ATTENTION AND VARIABILITY IN 

TEMPORAL SELECTION 
 

1.1. Summary statistics 

We assume that the distribution of errors in a given attentional condition follows a von 

Mises distribution, an approximation of the wrapped normal distribution:  

𝑓(𝑥	|	𝜇, 𝑘) 	= 	 !
!	#$%('())

"#$+(&)
     for 𝜇, 𝑥	𝑖𝑛	(−𝜋, 𝜋]		𝑎𝑛𝑑			𝑘 > 0 

where 𝐼( is the modified Bessel function of the first kind of order 0, 𝜇 is the location parameter 

(equivalent to the mean in a normal distribution), 𝑘 is the concentration parameter (1/𝑘 is 

analogous to the variance in a normal distribution) and 𝑥 the angular error in a given trial.  

1.2. Alternatives to the simple von Mises model 

To ensure that the von Mises distribution was also preferable to an asymmetrical 

distribution, we considered a sine-skewed von Mises distribution (Umbach & 

Jammalamadaka, 2009): 

𝑓(𝑥	|𝜇, 𝑘, 𝜆) 	= 	 !
!	#$%('())

"#$+(&)
	(1 + 𝜆𝑠𝑖𝑛(𝑥 − 𝜇))  for -1 ≤ 𝜆 ≤ 1 

where 𝐼( is the modified Bessel function of the first kind of order 0, 𝜇 is the location parameter, 

𝑘 is the concentration parameter, 𝜆 the skewness parameter, and 𝑥 the angular error in a given 

trial. This model with skewness as free parameter between conditions (hereinafter ‘SvM’, 3 

parameters per condition), was also compared to a fixed parameter version across conditions 

(‘SvM-FS’).   

 To also rule out the existence of a bimodal distribution (which could reflect the 

existence of systematic early and late selection episodes), we considered a mixture of two von 

Mises with distinct location and concentration (‘2vM’, 5 parameters per condition):  

𝑓(𝑥	|𝜇), 𝜇", 𝑘), 𝑘", 𝑤) 	= w	 !
!,	#$%('(),)

"#$+(&,)
+ (1 − 𝑤)	!

!-	#$%('()-)

"#$+(&-)
   for 0 < 𝑤 < 1 

where 𝐼( is the modified Bessel function of the first kind of order 0, 𝜇), 𝜇" are the location 

parameters of each von Mises, 𝑘), 𝑘" are the concentration parameters, 𝑤 is the relative weight 

of the first mixture component, and 𝑥 the angular error in a given trial. Two alternatives, with 

fixed concentration (‘2vM-FC’) or fixed location (‘2vM-FL’) across the two von Mises were also 

tested.  



4 
 

1.3. Trial-by-trial variability in precision level 

The concentration parameter of our simple von Mises model provides a summary 

statistic of the overall dispersion of responses across trials. This overall precision might be 

distinct from the true encoding precision leading to responses. In particular, encoding 

precision might fluctuate from trial to trial, leading to a variability that remains undetected by 

our overall precision measure. To check if our measure of overall precision was distinct from 

the participants internal variability in memory encoding, we performed an additional model 

comparison.  

It has been proposed that the distribution of errors following the encoding of a stimulus 

into working memory can be understood as a mixture of a von Mises and a uniform 

distribution, the later accounting for guesses, which represent no encoding at all (Zhang & 

Luck, 2008). However, it has been argued that such model should be interpreted with caution 

given the risk of inflated guess rate estimates. In particular, this risk has been shown to exist 

when the true generative process is a variable precision model involving zero guess rate (Ma, 

2018), or when the error space is non-linearly related to the stimulus space (Schurgin, Wixted, 

& Brady, 2020). We nonetheless tested if the responses distribution was composed of a mixture 

of a von Mises and a uniform distribution. The mixture model was defined with one additional 

parameter 𝑔 for the guess rate, as follows: 

𝑓(𝑥	|	𝜇, 𝑘, 𝑔) 	= 𝑔	 )
"#
	+ (1 − 𝑔)	!

!	#$%('())

"#$+(&)
    for 0 < g < 1 

The guess rate however could be shared across attentional conditions or not, we 

therefore had two variants of the von Mises + guess model: one with a specific guess rate for 

each condition (‘vM-3G’, 3 parameters per condition) and a shared, fixed guess rate across 

conditions (‘vM-FG’).  

A second line of thought in the working memory literature proposes that encoding 

from trial to trial is of variable precision rather than constant (Fougnie, Suchow, & Alvarez, 

2012; Van Den Berg, Shin, Chou, George, & Ma, 2012). In such a case, errors are coming from 

a mixture of von Mises distributions with their concentration following a higher order 

distribution (often a Gamma distribution). We therefore tested a third, variable-precision 

model (adapted from Van Den Berg et al., 2012). Contrary to Van Den Berg and colleagues, we 

did not use the Fisher information (𝐽) as the measure of precision, but we directly used the 

concentration parameter (𝑘) instead. The Fisher information being monotonically related to 𝑘, 

we kept the latter to make it comparable to our main model.   
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𝑓(𝑥	|	𝜇, 𝑘=, 𝜏) 	= ∫*(
!!./0('())

"#$+(&)
	𝐺𝑎𝑚𝑚𝑎(𝑘; &

+

,
, 𝜏)	𝑑𝑘   for  𝑘= > 0; 		𝜏 > 0 

where 𝐼(is the modified Bessel function of the first kind of order 0, 𝜇 is the location parameter 

of the von Mises distributions, &
+

,
 is the shape parameter (with 𝑘= as the mean concentration) 

and 𝜏 the scale parameter of the gamma distribution, 𝑥 the angular error in a given trial. The 

variable-precision model (‘VP’) has 3 parameters per condition. We also tested three other 

variants: one with a fixed shape, but variable scale parameter across conditions (‘VP-FK’), one 

with fixed scale but variable shape parameter (‘VP-FT’) and finally, one with both shape and 

scale parameters fixed across all attentional conditions (‘VP-FT-FK’).  

All of the tested models involved fitting a specific location parameter (𝜇) for each 

condition, in light of the strong and systematic difference in average latency observed between 

attentional conditions (Carlson, Hogendoorn, & Verstraten, 2006; Chakravarthi & VanRullen, 

2011; Hogendoorn, Carlson, VanRullen, & Verstraten, 2010). Note that our model comparison 

approach was not meant to be fully exhaustive, but rather test the potential fluctuation of 

precision from trial-to-trial. Exp 2 being a between-subject design, the models involving fixed 

parameters were omitted (excepted the 2vM, where the fixed parameters are between the two 

von Mises), and we focused the analysis on the potential difference in model type between 

conditions. 

Models were fitted using MLE. All analyses were carried out using R programming 

language. BIC and AIC were estimated for each model, and the difference between the simple 

vM model and the other models for each estimator is denoted ΔBIC and ΔAIC (fig. S1 & S3). 

A negative value suggests a better fit for the simple vM model. BIC is known to penalize more 

heavily the number of parameters than AIC. T-tests on BIC & AIC are left uncorrected. 

 

2. MODELS FITTING FOR EXP 1 
 

2.1. Summary statistics 

The mixture of two von Mises (2vM) was significantly worse in terms of BIC and not 

significantly different from the simple vM with respect to AIC (ΔBIC: T(19) = 0, p<0.001; ΔAIC: 

T(19) = 111, p=0.840). Importantly, the fixed precision / variable location between the two von 

Mises (2vM-FC) was really worse in terms of BIC (T(19) = 0, p<0.001) and not different in terms 

of AIC (T(19) = 65, p = 0.14), confirming that the latency was homogenous within a condition, 

and that the responses distribution was very likely to be unimodal. The fixed location/variable 

precision version (2vM-FL) was worse in terms of BIC (T(19) = 0, p<0.001), and not different 
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in terms of AIC (T(19) = 105, p>0.99). We also found no evidence for skewness. Both skewed 

von Mises models were worse than the simple vM (T(19) = 0, p<0.001 for SvM;  T(19) = 5, 

p<0.001 for SvM-FP). The difference in AIC was not significant (T(19) = 63, p=0.123; T(19) = 

81, p=0.389).  

2.2. Trial-by-trial precision 

When considering the von Mises + guess family models, a first important observation 

is that the vM-3G model, which supposes a variable guess rate between conditions, was 

significantly worse than the simple von Mises, according to ΔBIC (T(19) = 27, p=0.002) and not 

significantly different according to ΔAIC (T(19) = 146, p=0.133). Importantly, it also performed 

significantly worse than the model with shared guess rate across conditions (vM-FG) relative 

to BIC (T(19) = 201, p < 0.001), the difference in AIC between these two models was not 

significant (T(19) = 145, p = 0.143). It is therefore highly unlikely that a change in guess rate 

between attentional conditions would explain the difference in metacognition observed in our 

data. The benefit of adding a stable guess rate across condition (vM-FG) was unclear, with 

only the AIC favouring this model (T(19) = 166, p=0.021), but not the BIC (T(19) = 74, p = 0.261), 

and only when not correcting for multiple comparisons. 

 

Figure S1: BIC and AIC comparison (Exp 1). (A) The difference in the Bayesian Information 

Criterion (BIC) between the simple von Mises and each of the other models. A negative value 

suggests evidence in favour of the simple von Mises model. (B) Same measure but using the 

Akaike Information Criterion (AIC). Bar charts represent the mean across participants.  Error 

bars represent across participants SEM.  

When considering the variable-precision models, the worst model was the full VP, 

which fitted a specific set of shape and scale parameters to each condition. This model’s BIC 

was significantly worse than the simple vM (T(19)=26, p=0.002) and there was no significant 
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difference in AIC (T(19) = 154, p=0.069). The VP-FT-FK, which fixes the parameters across 

conditions, was not significantly better than the simple vM for BIC (t(19)=1.74, p=0.098) nor 

AIC (t(19) = 0.27, p=0.793). When fixing one parameter of the VP, we found no significant 

difference in BIC (for VP-FK: T(19)=118, p=0.647; for VP-FT: T(19) = 119, p=0.622), but a lower 

AIC for both models (for VP-FK: T(19) = 187, p=0.001; for VP-FT: T(19) = 188, p=0.001). The 

average ΔAIC was 6.37 for the model with fixed shape and 6.19 for the fixed scale model. 

Therefore, both of these two models were accounting equally well for the data, but the 

evidence favouring these models over the simple von Mises was fairly low, particularly when 

using BIC. 

 

2.3. Testing trial-by-trial precision 

Considering the guess rate family of models, only the model with fixed guess rate 

across conditions could be considered as a potential candidate, but adding a stable uniform 

across condition is mathematically equivalent to adding a probability constant, leading to no 

change in the precision pattern between conditions in this case.  

Regarding the variable precision family of models, we tested the potential effect of a 

trial-by-trial variability on parameters. We selected the Variable-precision with fixed shape 

model (fig. S2, A and B). A repeated-measure ANOVA was first applied on latency. It 

confirmed the effect of condition on latency (F(1.51, 28.74) = 203.46, MSE=1642.46, p<0.001). 

The difference between the pre-cue and exogenous conditions (t(19) = -6.62, p<0.001), the pre-

cue and endogenous conditions (t(19) = -15.7, p<0.001) and between the exogenous and 

endogenous conditions (t(19) = -15.12, p<0.001) were all significant after Bonferroni-correction 

(alpha=0.05/3). A second ANOVA was applied with average concentration as a dependent 

variable, and condition as an independent variable.  

The effect of condition on the average concentration was significant (F(1.98, 37.69) = 

4.06, MSE=1.00, p=0.03), but this effect was driven by a higher average precision in the 

exogenous compared to endogenous condition (t(19) = 2.78, p=0.012). The difference between 

the pre-cue and endogenous/exogenous conditions was not significant (all p>0.117, 

Bonferroni-corrected with alpha=0.05/3). These results are all fully consistent with what was 

observed using the simple vM model. 
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Figure S2: Effects of variable encoding precision. (A) The latency for each attentional 

orienting condition in the Variable-precision with fixed shape parameter model, we do not 

expect a change in the latency profile given the model. (B) The average concentration for each 

attentional orienting condition in the Variable-precision with fixed shape parameter model. 

There is no significant difference between the pre-cue and exogenous/endogenous conditions. 

Coloured dots correspond to individual participants in the given condition. Black-outlined 

dots represent the mean across participants.  Error bars represent across participants SEM.  

 

Together these results suggest that our attentional manipulation strongly affected 

average latency (𝜇), but not the overall precision of responses. It also suggests that our measure 

of overall precision (𝑘) of the response distribution was likely to mirror trial-level encoding 

precision for this experiment. Moreover, adding a guess rate parameter was only very weakly 

beneficial when the guess rate was fixed across conditions.  

 
3. MODELS FITTING FOR EXP.  2 

 

3.1. Summary statistics 

As for Exp 1, we found no compelling evidence for a bimodality or asymmetry of the 

empirical distributions, confirming the appropriateness of the simple von Mises model (see 

the 2vM/2vM-FC and the SvM models in fig. S3 and table S4).  
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Figure S3: BIC and AIC comparison (Exp 2). (A, B, C) The difference in the Bayesian 

Information Criterion (BIC) between the simple von Mises and each of the other models for 

pre-cue (A), exogenous (B) and endogenous (C) conditions. A negative value suggests 

evidence in favour of the simple von Mises model. (D,E,F) Same measure but using the Akaike 

Information Criterion (AIC).  Bar charts represent the mean across participants. Error bars 

represent across participants SEM.  

3.2. Trial-by-trial precision 

Because Exp. 2 has a between-subjects design, we oriented our analyses on the potential 

differences in encoding model between conditions (fig. S3 and table S4). Interestingly, we 

found strong evidence for the family of mixture models in the pre-cue group, and moderate 

evidence for it in the exogenous group, in sharp contrast to the endogenous group. In 

particular, the model with a mixture of a von Mises and a uniform (vM-3G) and the model 

with a mixture of von Mises following a Gamma distribution (VP) were significantly 

outperforming the simple von Mises model. This suggests that despite overall response 

variability being seemingly matched between conditions, the trial-by-trial fluctuation of 

internal precision level might be differentially distributed between pre-cue/exogenous and 

endogenous conditions. While the evidence against mixture models in the endogenous 

condition was unconclusive (fig. S3, C & E), it was markedly lower than for the pre-cue and 

endogenous conditions.  
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Group Model ΔBIC Statistical test (ΔBIC) ΔAIC Statistical test (ΔAIC) 

Pre-cue 2vM 3.73 T(31) = 320, p = 0.31 13.90 T(31) = 500, p < 0.001 

2vM-FL 5.07 T(31) = 354, p = 0.09 11.85 T(31) = 494, p < 0.001 

2vM-FC 0.51 T(31) = 238, p = 0.64 7.29 T(31) = 445, p < 0.001 

SvM -0.20 T(31) = 227, p = 0.50 3.19 T(31) = 441, p < 0.001 

vM-3G 8.60 T(31) = 435, p < 0.001 11.99 T(31) = 498, p < 0.001 

VP 9.24 T(31) = 468, p < 0.001 12.64 T(31) = 509, p < 0.001 

Exogenous 2vM -4.27 T(35) = 178, p = 0.01 5.90 T(35) = 506, p = 0.005 

2vM-FL -1.72 T(35) = 211, p = 0.06 5.06 T(35) = 526, p = 0.002 

2vM-FC -8.87 T(35) = 83, p < 0.001 -2.09 T(35) = 315, p = 0.79 

SvM -2.37 T(35) = 103, p < 0.001 1.01 T(35) = 405, p = 0.26 

vM-3G 1.88 T(35) = 355, p = 0.74 5.28 T(35) = 519, p = 0.002 

VP 2.56 T(35) = 410, p = 0.23 5.95 T(35) = 557, p < 0.001 

Endogenous 2vM -6.25 T(37) = 89, p < 0.001 3.92 T(37) = 543, p = 0.01 

2vM-FL -4.79 T(37) = 98, p < 0.001 1.99 T(37) = 451, p = 0.25 

2vM-FC -4.14 T(37) = 164, p = 0.002 2.64 T(37) = 450, p = 0.26 

SvM -1.41 T(37) = 208, p = 0.02 1.98 T(37) = 450, p = 0.25 

vM-3G -0.35 T(37) = 290, p = 0.25 3.04 T(37) = 506, p = 0.05 

VP -0.48 T(37) = 256, p = 0.10 2.91 T(37) = 543, p = 0.01 

 

Table S4: Statistics. The average difference (ΔBIC, ΔAIC) between the simple vM and the 

considered model. Negative values are evidence for the simple von Mises.  

 

3.3.Testing trial-by-trial precision 

 

To better understand the nature of the trial-by-trial fluctuation in precision, we estimated the 

parameters of the Variable precision model for each condition. For the reasons to prefer this 

model over the guess rate model, please see Section 1.3. of the present document and Section 

2 of the paper. We did not fit the VP model per confidence group, because given the limited 

samples per group (approx. 90) and the complexity of the model, drawing conclusions about 

estimated parameters in this case would have been relatively meaningless. 
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Figure S5: Parameters estimate for the VP model (Exp 2). The significant effect of 

condition on the average concentration (A) and scale (B) parameters of the higher order 

Gamma distribution suggest that internal precision is fluctuating from trial to trial in a more 

pronounced way for the pre-cue condition.  

 

We did not test the latency, since this parameter is the same in both the simple von Mises and 

VP model.  We applied two distinct ANOVA on the average concentration parameter and the 

scale (fig. S5). The effect of condition on both average concentration (F(2, 103) = 6.33, 

MSE=3.86, p=0.003)  and scale (F(2, 103) = 8.28, MSE=2.96, p<0.001) was significant. Corrected 

t-test confirmed a difference in average concentration between pre-cue and exogenous (T(66) 

= 781, p = 0.01), pre-cue and endogenous (T(68) = 846, p = 0.005), but not for exogenous vs. 

endogenous (T(72) = 706, p = 0.82). Regarding the scale parameter, we found a significant 

difference between pre-cue and endogenous (T(68) = 944, p < 0.001), but not between pre-cue 

and exogenous (T(66) = 394, p = 0.02) and not between exogenous and endogenous conditions 

(T(72) = 847, p = 0.08).  

One could therefore speculate that orienting endogenous attention temporary shrinks 

trial-by-trial precision variability (fig. S6). This shrinking could be partly responsible for the 

difference in metacognitive ability found in the present study: with lower trial-by-trial 

fluctuation in evidence signal, error discrimination might prove more difficult, despite 

average selection variability remaining fairly stable. It has been recently proposed that 

variable precision models can be related to the stochastic sampling interpretation of neural 

population coding, where multiple samples of a stimulus are taken depending on resource 

allocation (Schneegans, Taylor, & Bays, 2020). The quality of representation depends on both 
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the number of samples and the encoding precision, the latter being weighted by a Gamma-

like distribution over samples. Within this framework, greater average precision is also 

synonymous of broader variability in precision level (fig. S6). One could speculate that such 

mechanism also facilitates metacognition.   

 

 

Figure S6: Schematic diagram of the difference between overall and trial-by-trial 

precision (Exp 2). While the overall dispersion of the empirical distribution of error could 

remain relatively similar between conditions (left panels, from top to bottom), the different 

components (centre panels) of the distribution can be produced by different levels of internal 

precision. Each particular precision level (Kn) is weighted (Wn) via a higher-order distribution 

(right panels). The distribution of internal precision has been shown to often follow a Gamma 

distribution. The two parameters (a,b) of the internal distribution determine trial-to-trial 

variability in precision (K). We used the group-averaged estimated parameters of the fits to 

produce the different internal precision distributions. Lower average precision level correlates 

with lower fluctuation in precision (e.g. endogenous vs. pre-cue).  
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4. CLOCKS’  ECCENTRICITY IN EXP.  1 
 

		 Our experimental paradigm in Exp 1 involved two distinct eccentricities: 4 of 

the clocks were located at 4° eccentricity and 2 clocks at 6° eccentricity. The eccentricity here 

was also depending on the position relative to the horizontal meridian (the 6° eccentricity 

landing on the meridian). We nonetheless checked if eccentricity has an effect on our results. 

We added the eccentricity factor to the ANOVAs reported in section 3.1.2. of the main 

manuscript, where latency (or concentration) was predicted by confidence (higher vs. lower) 

and attention condition (pre-cue vs. exogenous vs. endogenous).  

We found no evidence for an effect of eccentricity on latency (F(1,19) = 0.08, MSE = 

721.78, p = 0.78), no eccentricity x confidence interaction (F(1,19) = 0.51, MSE = 224.13, p = 0.48) 

and no eccentricity x condition interaction (F(1.74, 33.09) = 0.40, MSE = 609.91, p = 0.64). The 

triple interaction confidence x condition x eccentricity was also not significant (F(1.71, 32.57) = 

0.43, MSE = 528.87, p = 0.62). 

Regarding concentration, we found a main effect of eccentricity (F(1, 19) = 13.56, MSE 

= 1.86, p = 0.002), but no confidence x eccentricity interaction (F(1, 19) = 2.98, MSE = 0.72, p = 

0.10) or condition x eccentricity interaction (F(1.99, 37.72) = 0.73, MSE = 1.27, p = 0.49). The 

triple interaction confidence x condition x eccentricity was also not significant (F(1.46, 27.78) = 

0.72, MSE = 1.97, p = 0.45). 

Therefore, we can conclude that eccentricity (or the clock’s position relative to the 

horizontal meridian) affected perceptual performance via encoding precision, as reflected by 

the main effect on the concentration parameter. However, it did not affect metacognition, since 

the effect of eccentricity on precision did not interact with confidence level. The effect of 

eccentricity on performance also did not seem to depend on attention. To rule out any effect 

of eccentricity on our conclusions, in Experiment 2, all clocks were placed at the same 

eccentricity along a virtual circle centred on the fixation point. However, it would be 

interesting to consider the effect of peripheral presentations distance in future studies. 

5. RAW HISTOGRAMS OF EXP.  2 
 

The excluded outliers are presented at the end.  
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5.1.Included participants 
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5.2.Excluded participants (outliers) 
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